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Big chips require artful compromises, as demonstrated

by this design case history
Stripped of its mystique, designing a high-performance
microprocessor like the Zilog 28000 is like designing any
other complex system of digital electronics, except that good
engineering practices, instead of being merely desirable, are
crucial. Here are the key rules that the designers of the 28000
followed:

• Top-down design is essential (Fig. 1) because once the
concepts are frozen in silicon, it takes many months to cor­
rect even a minor error. And time is of the essence, because
LSI density increases so rapidly each year that nobody wants
a design geared to last year's capability.

• Accurate product cost predictions are more critical than
when designing with off-the-shelf tcs. The LSI analog of ic

parts count is chip area, which is much more critical than a
conventional bill of materials. Chip price is proportional to
yield, but if the chip area is increased, say, 10 percent, the
yield may go down by 25 to 50 percent. If the designer waits
until the last minute to calculate chip size, his company may
wind up with a chip too big to sell profitably.

• Product definition is crucial in the early design phases.
With a ten-year expected life for the basic design (the life ex­
pectancy of the Z8000), a lot of basic analysis and crystal
gazing into future application needs must be done by the
company's software architecture groups. The senior chip
designer must then see if these architectural goals can be
realized. He is reasonably free to change the instruction for­
mat and to suggest new instructions and drop out old ones,
provided he can convince the software architects that the in­
itial overall goals have not been compromised.

• Second-source availability is vital. But microprocessor
design is process-determined. To insure second sourcing for
the Z8000, Zilog chose only a moderately scaled-down MOS

process, using 5-6 JAm design rules instead of, say, 4 JAm, and
moderate clock rates of 4 MHz rather than 5 or 6 MHz. The
goal was also to achieve higher performance than that in ex­
isting 16-bit processors. But to get such performance re­
quired very careful planning of the instruction set, the in­
struction format, and the chip design.

• Very carefully thought-out methods ofcommunication
are needed between members of the design team. When the
Z8000 program started some two and a half years ago, there
were very few senior processor designers, few associate
designers with any experience, and no specialists in any
design phase. The Z8000 design was done by the author; an
associate designer, C. N. Patel; an associate layout drafts­
man; and a senior layout draftsman. Each had to discuss
with the three others all phases of the project. Good layout is
crucial in keeping down the chip size; there must be no
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wasted interconnection space, no speed bottlenecks. Op­
timum power line widths must be correctly specified to in­
sure good noise margins. The designers must provide the
draftsmen with rough layouts of critical chip areas and
monitor the draftsmen's final layout closely to insure that
the propagation time will be as predicted. If those precau­
tions are not taken, the layout may have to be redone.

• Experience counts in speeding the work flow. The
author was fortunate to have acquired design experience on
previous processors, the 4004, 8080, and Z80. This expertise
was handed down in an orderly way to the associate designer,
both for the present design and for future ones he might
undertake. All of the Z8000 detailed circuit design was, in
fact, done by Mr. Patel in only six months. As MOS advances
toward VLSI and much higher density, the designer's task
may well be eased by less need to optimize all the circuits, by
a greater number of trained logic circuit and layout
designers, and by a library of subsystem designs.

• All the key rules have to be handled interactively. The
complete specification of instructions and their format, the
selection of optimum chip size and process, and the attain­
ment of best chip performance, best use of available skills,
and optimum layout cannot be solved separately; they have
to be solved together because each greatly affects the others.

Design time vs. performance
As the transistors on microprocessor chips increase each

year, it is important to hold their design times within
reasonable bounds. By comparing Tables I and II, we see
that although the number of instructions multiplied by 3.3 in
going from the Z80 to the Z8000, the time it took to design
the 28000 only doubled. The time increase was proportional
to the number of transistors on each chip.

It would not be safe to infer, however, that future high­
performance 16- and 32-bit microprocessor generations
would scale so successfully if one employed the same fine­
tuning techniques used with the 28000. Nor is it clear that
even a linear relation between design time and the number of
transistors would be acceptable for a VI.Sf logic chip with
several hundred thousand transistors.

The critical goals
Five critical goals were set for the Z8000 to insure a long,

cost-effective life. Each unfortunately conflicted with the
need to keep the chip size down to one that could be pro­
duced economically: a die size of 220 x 220 mil' to 250 x
250 mil 2. The objectives were these:

1. A large memory address space with optional segmenta­
tion and memory management. The Z8000 chip is offered in
two bonding versions. The 40-pin, nonsegmented version
uses 16-bit addresses that can directly access 64 kbytes of

22 0018-9235/79/0700-0022$00.75 (f) 1979 IEEE IEFE spectrum JUI.Y 1979



Taking the first step
The first step in creating any microprocessor is to specify

the kinds and the total of distinct instructions that will be

Micro-/
macro­
command
generator

Decoders

Legend:

First group

Do layout

Do area estimate

Do MOS schematic

Do layout approach

Overall layout topology

Rough estimate chip size

Define hardware architecture

Define functional
specification

chip area needed for subsystem interconnection.
• Many circuits used to minimize the number of clock

cycles per instruction. But more complex logic does not
always mean more area. The goal is to find the circuits of
least area that meet the chip's performance objectives.

(1) The top-down design cycle for the Z8000 microprocessor.
In many cases It Is necesary to go backward as a check
against deslyn or layout error. Color·key Is the same as In
Figs. (3] and 7].

memory. The 48-pin, segmented or nonsegmented _version
can access 8 Mbytes of memory, using a 7-bit segment
number and a 16-bit offset address. Although segmentation
and memory management are provided by outboard chips,
the main CPU still requires segment-addressing circuitry and
a segment 10 bus, and both of these take up chip area, even in
the 40-pin versions that don't use segmentation.

2. Abundant resources, including sixteen 16-bit general­
purpose registers, eight user-selectable addressing modes,
seven main data types, and a large number of distinct in­
struction sets.

3. Good software regularity, which means that at least the
most frequently used instructions can use all addressing
modes and data lengths (up to 32 bits in the Z8000). The
greater the regularity, the easier it is to write programs with a
minimum of instructions, thereby speeding execution of the
program.

4. A compact instruction format to insure that frequently
used instructions have the fewest bits and that no bits are
wasted in the instruction op code, other than for future ex­
pansion. The more compact the format, the less use of
memory for a given set of program statements and the faster
they will execute.

5. High-speed execution of frequently used instructions.
This requires maximum effective use of the memory bus for
such instructions. Bus use of 100 percent would mean that
the processor spent all its time accessing memory and wasted
none figuring out what to do next. At 100 percent use, execu­
tion speed is determined by RAM access speeds, not by the
processor. The Z8000 has a bus-use factor of 80 to 85 percent
for typical instruction mixes and up to 90 percent if jump in­
structions are excluded. The author's Z80 design, by way of
comparison, had a bus-use time of only 65-70 percent.

It is because of bus use, by the way, that with the design of
the Z80, the original 8008 instruction format had been
developed to its fullest. All additional instructions would re­
quire two or three 8-bit instruction fetches, a poor use of
memory bus bandwidth. The next generation had to change
to a 16-bit format to get higher throughput.

To get a rough idea of how the five critical goals affect chip
size, suppose the Z8000 instruction set were less regular than
it is but still usable for low-end, 16-bit minicomputer ap­
plications. Only 14 000 transistors would have been needed
instead of the present 17 500, and the chip size would have
been 215 x 215 mil' instead of its present 238 x 256 mil'.
Such a processor would not, however, have had the addi­
tional features of the Z8000-nalnely, 32-bit operations,
segmented memory, and task switching between supervisory
and normal operating modes.

Looking at chip size vs. performance goals in another
way, we find that if the same instruction set of the produc­
tion Z8000 were designed to run 25 percent slower with the
same LSI process, the chip area could have been reduced 20
percent. This substantial saving would have come about
through reduction of device sizes needed for high speed,
reduction of large transistor areas, reduction of wide power­
line bus widths, and by leaving out the following extra cir­
cuitry that gives the Z8000 added speed:

• Four-bit, sliced carry look-ahead logic in the 16-bit
arithmetic unit.

• The look-ahead instruction decoder.
• The redundant primary instruction decoder.
o Several different types of internal data and control

busses ..Had these been multiplexed, with a subsequent loss
in speed, there would have been a substantial reduction in the
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needed, the degree of instruction regularity required, and the
compactness of the instruction format.

The next step is to decide on the bit organization of the in­
struction format-that is, the number of bits in each instruc­
tion and the arrangement of bits for the data, address, and
control fields. An important consideration is how much
space to leave for future instructions. The logic complexity
of the chip-and hence its speed and size-depends critically
on the complexity of the format.

Some regularity and some compactness can be sacrificed
to save chip area or to decrease the number of clock cycles
for the instruction. The yardsticks for measuring the degree
of regularity and compactness are by both static and
dynamic checks of the frequency of instructions, including
all register contents. Clearly the instruction DECREMENT AND

JUMP ON NON-ZERO may appear infrequently measured
statically but very frequently dynamically if the loop is
repeated often.

Performance or throughput is proportional to code com­
pactness-the less the memory-code space, the faster the ex­
ecution. So for the Z8000 every effort was made to conserve

I. Design parameters for the 8080, zao, and Z8000
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compactness. Some regularity was also sacrificed to com­
pactness, in the sense that the less frequently used instruc­
tions are not very regular. For example, ROTATE/SHIFJ in­
structions are used only in the register mode.

I f regularity alone had been considered, the ideal instruc­
tion bit length of the Z8000 would have been 21 bits. This
would have permitted a completely regular instruction set
and would also have resulted in assembler programs of
minimum length, since with that 21-bit word length, each bit
and each bit field would have served only one purpose. Each
bit location would have been concerned with some address­
ing mode, op code, data length, source or designation field,
but not with any combination of these.

Since 21-bit words obviously don't store very efficiently in
byte-organized memories, the next simplest choice would be
both 2- and 3-byte formats. The 2-byte group would be
reserved for the most frequently used addressing modes of
REGISTER. DIRECT and IM~1EDIATE.

The variable-byte format would have resulted in very tight
instruction packing in memory, plus good regularity, but the
author felt that performance would have suffered and chip
size would have increased, compared with what could be
done with other formats.

The chief chip-design problem with variable-byte instruc­
tions occurs during a JUMP RELATIVE command, which may
happen with a frequency of 10 to 16 percent in dynamic
checks of typical program mixes. The processor does not
know the number of bytes in the next instruction, and this
number is needed to update the program counter correctly.
Instruction-prefetch circuitry, not used in the Z8000, would
have helped save time in those jumps whose next instruction
location had been guessed correctly but would have been a

Z8000Z808080
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(2) The three most frequently used 28000 instruction classes
and their formats.
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hindrance in those cases where the wrong direction had been
prefetched. The Z8000, for example, can make a JUMP

RELATIVE in six clock cycles, which is substantially less than
can be achieved with instruction prefetch techniques.

The Z8000 does have an instruction decode look-ahead
used to speed instruction addressing and execution opera­
tions. Since this works only on the instruction fetched, not
the one ahead of it, wrong guesses are avoided.

The even-byte alternative
The author's alternative to variable-byte instructions was

even-byte, or word-aligned, instructions that were mostly

A 'don't-do-lt-yourself' home project
Given a pencil, 30 D-size drawing sheets, a desk
calculator, occasional use of a computer and some
five to 20 years of spare time, a reader who followed
Masatoshi Shima's design plans for the l80 and
Z8000 microprocessors might design and optimize his
own high-performance microprocessor. (By optimiza­
tion is meant minimum chip area for maximum chip
program throughput.) Such a do-it-yourself approach,
however, would not solve the semiconductor
industry's search for new designs to put on VLSI chips
(see 'VlSI, some fundamental challenges," Spectrum,
April 1979, pp. 30-37).

Fine-tuning the chip design for optimum perfor­
mance-as practiced by Mr. Shima, who was also the
Intel 4004 and 8080 chip designer-may prove too
time-consuming for future high-performance 16-or
32-bit microprocessor chips. Still, Mr. Shima feels it
will continue to be a good approach for the 8-bit micro­
processor and for simple, high-speed 16-bit micro­
processors.

One saving grace of future high-density VlSI may
prove to be its comparative freedom from this need for
time-consuming optimization of the precise execu­
tion speed of each instruction. The degree of this
freedom depends on the application. At one extreme,
where projected sales volume is a few thousand per
year-for example, when VlSI is used to duplicate the
architecture of a large mainframe-it will probabtybe
cheaper to go for an automated design with
deliberately wasted chip area rather than spend the
extra man-years refining the design. At the other ex­
treme, for general-purpose microprocessors with
potential sales of several million per year, some form
of human optimization will continue to be necessary
to save chip area.

Present computer-aided design (CAD) programs for
high-volume microprocessors leave a lot to be desired
in chip-area saving. For example:

• One problem with present CAD is computer time.
All the internal delay times of a complex chip can be
precisely modeled by computer today, but, the pro­
gramming and computer execution time is too expen­
sive for anyone to try it, except for critical paths.
Simplifying the delay-time calculations in an orderly
way, as done by Mr. Shima, may prove necessary.

• Some future CAD programs may prove as effective
as humans, or even more so. at the final design stages
and for layout. But at the early conceptual stages
unavoidably subjective decisions will probably
always be necessary. In the design of a new processor
architecture, there is at present no extensive theory
that will predict the pipelining and parallel processing
needed for a given performance. There are a few pro­
grams for computer modeling of different processor
architecture types, but they are not widely used at the
commercial semiconductor houses.

• The intermediate stages of design, between con­
ception and detailed layout, lend themselves in
theory, but not yet in practice, to machine optlrnlza-
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one or two words long. These still provide good memory
packing density, regularity, and high performance for a
given clock speed, provided the instructions used most often
also use the fewest words.

An advantage to these word-aligned formats-one that
saves chip area-is that an instruction decode look-ahead is
very easy to layout under internal bus metal lines with a
minimum of extra circuitry.

The first question to be raised about the word-aligned for­
mat is how much compactness is lost by giving up single-byte
instructions and relative-address, one-byte offsets. It is true
that a few Z8000 instructions, like INTERRUPT DISABLE and

tion. The difficulty is one of topology. While the
number of transistors to accomplish most tasks can
be minimized by use of Boolean logic equations, the
area they occupy cannot be so minimized: A
topologically disorganized collection of transistors
will require more interconnect area, and hence more
total area, than a well-organized set. Moreover top­
level decisions to speed a particular section increase
the transistor area in that section and require a
decrease in area elsewhere. A partial solution, sug­
gested by Mr. Shima, is to codify in some way the pres­
ent expertise of the semiconductor house designers
and draftsmen, so each new desig n team doesn't have
to reinvent the wheels of the last one.

Designers of the future, as pointed out by Prof.
Carver Mead of the California Institute of Technology,
will be designing more "machines within machines,"
such as microprogram controllers and intelligent
memories inside microprocessors. So topology op­
timizing of the future will go on at even more levels
that those described by Mr. Shima. Professor Mead
and his associates are exploring theoretical solutions
for such complex organizations.

But until VLSI chip designers have more high-yield
silicon area than they can possibly fill with useful
structures, there are lessons to be learned from
Masatoshi Shima's hand-optimized approach.

The basic Shima chip design of the Z8000, by the
way, differs significantly fromthat of the Intel 8086
(see "New options from big chips," Spectrum, March
1979, pp. 28-34), The Intel approach used an instruc­
tion prefetch technique, perhaps well-suited to Intel's
variable-byte word lengths, high-speed clock process,
and memory-segmentation scheme. The Z8000
design, on the other hand, is tailored to a slower MaS
process and clock and a different segmentation
scheme, and it uses multiples of 16 bits for each in­
struction rather than the 8-bit muttiples of the 8080. It
does not have an instruction prefetch mechanism.

The reader should not conclude from this, however,
that the Z8000 is slower than the 8086. The Z8000 uses
only three clock cycles instead of Intel's four to ac­
cess memory, and Mr. Shima feels that the 28000 will
execute an average instruction mix more quickly than
the 8086, although that question is not addressed
quantitatively in the accompanying article.

The designer has included a wide variety of optimiz­
ing circuits to speed the Z8000 performance. For ex­
ample, the microprocessor uses random logic for con­
trol instead of the microprogram approach of the Intel
8086 or the Motorola 68000. The random-logic ap­
proach, at least as used by Mr. Shima, is recognized
as the ultimate fine-tuning technique for best perfor­
mance with minimum chip area. But both Mr. Shima
and designers throughout the industry regard it as too
time-consuming for the design of 16-bit and 32-bit
microprocessor structures that are more elaborate
than the Z8000.

- Robert Sugarman, Associate Editor
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unnecessary as more sophisticated two-word prepro­
grammed block-transfer and string-manipulation instruc­
tions were judged to give greater performance.

The major reason, however, why one-byte instructions
wouldn't work in the Z8000 was the decision to use 16rather
than eight accumulators or general-purpose registers. Eight
could have created programming bottlenecks. Further, the
Z8000 avoids another bottleneck that hampered previous
generations of microprocessors like the Z80: It abandons ob­
ject code compatibility by avoiding the restricted, implied or
dedicated registers used in the 8080. For increased regularity,
none of the Z8000 registers, with one exception, is ever im­
plied in an instruction and none has special restrictions on its
use. The extra op code required to handle the 16 registers in
this way made one-byte register operations impractical.

Obstacles to the first proposal
The first 16-bit format proposed by the author as an alter­

native to variable-byte instructions had two disadvantages:
the one-byte address-offset length, which followed the in­
struction in the relative addressing mode, and the constant
byte of data, which followed the instruction for the im­
mediate addressing mode.

To eliminate those one-byte additions, the "tight instruc­
tion" format was introduced. It was employed only for the
most frequently used one-word instructions: less frequently
used instructions, like AND IMMEDIATE, were excluded for
lack of op-code space. The tight instructions are JUMP
RELATIVE, LOAD IMMEDIATE BYTE, LOAD IMMEDIATE WORD,
DECREMENT AND JUl'vIP ON NON-ZERO, and CALL RELATIVE.

The organization of the tight group, as well as two next­
most-frequent classes of instructions are shown in Fig. 2.
These formats clearly do not have absolute regularity, but
the resulting loss in programming efficiency is not high
statistically. The major frequency grouping is as follows:

• The five address modes used most often are permitted
for most two-operand instructions. In this case only two bits
are reserved in the op code for the address modes, so the ex­
tra code bit needed for five modes isobtained by determining
whether the source field is all zeros, as shown in the figure.
For one-operand instructions, four addressing modes and
any data length are permitted.

• LOAD and STORE instructions require three more ad­
dressing modes-cuxst ADDRESS, BASE INDEX, and RELATIVE
ADDRESs-while a LOAD ADDRESS provides for more
sophisticated addressing schemes.

• LONG WORD instructions are used less frequently than
WORD or BYTE instructions and single-operand instructions
less frequently than double-operand types.

All these careful distinctions of frequency of use, which
made for compactness and preserved statistical regularity,
were critical to the chip design phase. For best statistical per­
formance, the instructions used most often were designed to
be executed with the fewest clock cycles.

The circuitry area that would have been required for a
variable-byte format was instead used in two other ways:

1. To increase the efficiency of the memory bus for fre­
quently used instruction types and addressing modes.

2. To condense time-consuming software subroutines in­
to simpler instructions.

Some of the simpler instructions that replace conventional
subroutines are:

• Long-word division and multiplication.
• LOAD and STORE MULTIPLE.
• INCREMENTIDECREl'vlENT BY N.

Legend:

[] First group

2nd group
decoders

2nd group
code generator

State
timing

Machine
timing

Auxiliary
instruction decoder

Secondary
instruction decoder

[3] The Z8000 subsystem architecture. Color-key is the same
as (1) and (7).

SET and RESET FLAGS, might be done in one byte, but these in­
structions are infrequently used.

For general address relocation, a one-byte offset relative
to the program counter might have been added. But a one­
byte offset is often inadequate for data relocation, especially
when the programs are designed for separate program and
data areas. Rather than use such an offset, selected frequent­
ly used instructions are allowed relative offsets in their in­
struction fields. Relocation of the other instructions and of
data is done by an external memory management chip.

One-byte primitives might have been added to assist in
block manipulation of characters in memory, but these were

16 bit
internal
data bus
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• High-speed 888 kbytes-per-second interruptible,
preprogrammed block and string operations.

• A limited number of memory-to-memory operations,
like STORE IMMEDIATE, PUSH IMMEDIATE, and COMPARE IM­

MEDIATE.

The decision not to use variable-byte architecture is typical
of the complex decisions facing chip designers at the first
stage of design, so it is worth discussing in a little more detail.
As already mentioned variable-byte code requires
instruction-prefetching for best performance. This, in turn,
requires a lot of pipelines and an instruction buffer to keep
up the efficiency _ It also requires a clock of higher
speed-say, to 6 MHz-than the clock used in the Z8000.
The reason for the faster clock is that the buffer and the in­
struction execution unit must run asynchronously. This may
cost a clock cycle if the execution unit cannot detect in time
whether the buffer is empty, A short clock cycle minimizes
the time lost.

Prefetch is also useful if the processor takes a long time to
calculate an address, since the next instruction may be
fetched in that time. The Z8000, however, is optimized for
short address calculation and execution time for the most
frequently used address modes and instructions.

Detailing the system architecture
Having settled on the overall architecture-in this case,

word-aligned instructions, no prefetch, and no instruction
pipelining-the designer can now go down one step in the
design hierarchy and decide on the subsystem architecture.
The subsystem may be divided into two groups: the execu­
tion and the instruction-implementation circuitry. The ex­
ecution group includes:

• Arithmetic and flag section.
• Register files.
• Program counter.

• Dynamic RAM memory refresh counter.
• External address, data, and control busses and their

controllers.
• Interrupt handling controller.
e CPU mode-selection unit, for selecting segmented or

nonsegmented memory operation and system or normal
modes.

The instruction-implementation group includes:
• Instruction register.
• Look-ahead instruction decoder.
• Primary decoder.
• Second decoder.
• Auxiliary decoder.
• Instruction-execution unit.
• CPU timing generator.
The first group's circuit design and layout won't change,

even if the second group is changed drastically-say to go
from random-logic to microprogram control. This is for­
tunate because it permits the two designs to proceed in­
dependently. The draftsmen, for example, can layout the
first group while the designers start on the second group, as
was done for the Z8000. Also, instruction types and formats
can be changed without effect on the first group.

But there are design tradeoffs between the two groups, so
both have to be studied carefully before signing off on the
design of the first group. The Z8000, for example, uses both
macrowords and microwords for controlling the CPU.

Macrowords, which control a group of functions, like
arithmetic commands, take less complex circuitry in the im­
plementation or control section but more circuitry in the ex­
ecution section.

First-group architecture
A number of design tricks can be used to speed the execu­

tion group. In the Z80 design, for example, the author was
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for an ADD mstruction

A
B

Logic equationslor two rrucrocornmands used In the ADD
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IF 1 EX 1
Instruction
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to data in DST ALU - ·DST CJ ·CYF SRC --·DATA DST . ·ATM DATA in .-·TMP

FLG OVJ - ·QVF out CLR CYa
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SJ 'SF

Micro or macro level command T IF EX Instruction

Load internal bus to TMP 3 1 ADD: SUB and many other instructions

Send DST to ATM 2 1 ADD: SUB and many other instructions

Legend:

ALU unit has 3 operands: ALU = ATM ± TMP ::!: CY

IF = Instruction fetch from memory

EX = Execute
DST = Destmation

SRC = Source 8/W =Byte or word
IR = Instruction register

(4] The state table (A) must be converted to mlcroCommands (8) used by all the Instructions. A
portion of one state table Is shown for an ADD Instruction.

(5] An ADD Instruction shows how cycles can be burled within memory cycles.
ADD
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To allow 32-bit operations with 16-bit register files, for ex­
ample, the 16-bit files were double-ported with two data
lines, one for the most significant word and the other for the
less-significant word. The data lines connected each bit of
the register, with each data line from one register group con­
nected to every other register.

There are a number of advantages to this dual porting:
• The 32 bits can be read at once. When the register file is

used in segmented mode as the memory pointer, the most­
significant 16 bits of the address-which are, by definition,
the segment number-can be sent to a memory-management
chip, while the least-significant 16 bits go out on the address
bus. Also, the segment number can be sent out one clock cy­
cle earlier than the 16-bit offset. Thus little time need be lost
in calculating the physical address in the memory­
management chip.

• The most-significant 16 bits ofdata can be read while the
less-significant 16 bits are written into the file from the inter­
nal data bus.

e Sixteen 16-bit registers can be laid out in more compact
form than can eight 32-bit registers.

Another speedup hardware circuit added to the 28000 was
a shifting mechanism between the register files and the inter­
nal data bus. This shifter saves clock cycles for 32-bit data
manipulation. For example, 16-bit unsigned multiplication
can be done in 48 clock cycles. Another shifter is used be­
tween the arithmetic unit input and the internal data bus for
fast calculation of relative address offsets in some of the tight
mode instructions, like JUMP RELATIVE.

The second-group architecture
When the basic design for the first group is complete, the

designer can define the microlevel commands that will con­
trol them, such as "send register file to internal bus" or
"shift to left." f f the designers have a good topological idea
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able to isolate various sections with MOS switches. This
allowed several to work in parallel. In particular, the follow­
ing operations could all be done simultaneously:

• Data transfer between arithmetic unit and accumulator
in the register file.

• Flag transfer between temporary flags and the flag
register in the register file.

• Loading of instructions into the instruction register
from the data bus.

e More complex logic for incrementing of the program
counter.

Unlike the Z80 unfortunately, whose process was fast
compared with its expected performance, the Z8000 process
was very close to its expected performance, so the delay time
incurred by MOS switching, as used in the Z80, could not be
tolerated.

But it was important for the arithmetic section of the
Z8000 to perform a complete operation every clock cycle, in­
cluding testing the final result for condition flags, like CARRY

or ZERO. SO to save time, arithmetic and flag-testing opera­
tions were done with separate circuits, each operating in a
time-overlapped mode. Separating the two functions
physically also made for a cleaner layout.

Some other interesting parallel circuitry was added to the
Z8000 without incurring a time delay penalty.

Clk

Machine timing

State timing

Micro- / macro­
level command
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of how much and what kind of space will be required by the
execution group, its layout can be started by the draftsmen
while the designers start on the instruction-implementation
group.

But it is important to know the topology of each sub­
system before any layout is started. An irregular
layout-metal lines not running straight across a subsystem,
for example-means longer interconnect lines, particularly
for the internal data-control bus, and hence wasted chip
area. In addition a lot of time is lost just checking the layout
for continuity. The 28000 layout is cleaner than the 280's
because the author learned from the latter that he had to
spend a larger proportion of the total design time just trying
to visualize the final layout.

The design rules for the process determine the gate density
for the chip and hence its performance for given total area.
Size is restricted in one direction by the width and separation
of the metal lines; in the other direction size is determined by
the gate-channel length, di ffusion and poly width and
separation, as well as by other geometric rules. If the
designer has sufficient experience, he can choose logic that
he knows will take the minimum layout space, and he can
provide size estimates to the draftsmen.

Generating microcode commands
Random logic, used for the Z8000 instruction­

implementation unit, could have been replaced by extensive
multilevel program logic arrays (PLAS). But ROM-like
organizations, implying a matrix of many transistor nodes,
were inappropriate to high performance with the chosen 1\105

process. The large capacitive loading of the nodes would
have increased internal delay times significantly.

Instead the logic was implemented with an extension of the
minimal-node designs used for the 8080 and Z80; it requires
less chip area and only about a third the layout time of "con­
ventional" random logic. Because of its topological regulari­
ty, it also allowed a good estimate of chip area prior to
layout.

The technique is to split the instruction implementation
unit into three major sections (Fig. 3):

I. The instruction op-code decoders. These generate static
commands but do not carry timing information. Since speed
is not too critical here, these sections use extensive ROM-like
decoding.

2. An instruction-execution unit, which uses NAND timing
gates to quantify these static levels into micro- and macro­
words at appropriate time slots. Timing is critical in this sec­
tion, and the state-variable equations are not very complex;
so the NAND gates are more effective than ROMS in minimiz­
ing the number of transistor nodes and the chip area, while
maintaining good timing accuracy. The basic time slot is a
single clock cycle. The CPU executes instructions by stepping
through a set of machine cycles, such as MEMORY READ or
WRITE, or internal operations. Up to eight machine cycles are
used either for instruction fetching or execution. Each
machine cycle uses a minimum of three clock cycles, with one
to five clock cycles added ifnecessary for data manipulation.
The instruction-state diagram of Fig. 4 shows how an in­
struction may be executed with microcommands at the
proper state and machine cycles.

3. To supervise all the timing options, a CPU system timing
generator provides, where necessary, up to eight state and
eight machine options to the NAND gates. The decoders pro­
vide state information to the timing generator to tell it the
number of fetch machine cycles, execute cycles, and state
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cycles in each machine cycle of the instruction to be ex­
ecuted.

More on priority and timing
The microcode commands (microcommands) needed for

instruction execution were grouped into four sections, each
with a separate decoder, according to priority. Instructions
with the highest priority were executed as soon as possible,
those with the next highest priority after a one-clock cycle
delay, the next highest priority after a two-clock cycle delay,
and so on. Because there was no instruction prefetching
mechanism, it was crucially important to generate the first .
microcommand as quickly as possible after a new instruction
was loaded into the microprocessor. In order of their priori­
ty, the four decoders are the look-ahead, primary, second­
ary, and auxiliary units.

As an example of assigned priorities based on frequency of
use, two-operand instructions were judged more important
than one-operand; REGISTER and DIRECT were the most im­
portant addressing rnodes; and the five main addressing
modes were more important than the remaining three.

The look-ahead instruction decoder operates on frequent­
ly used instructions, while the instruction is still being stored
in the instruction register. DIRECT and INDEX addressing
modes, for example, use the look-ahead decoder. As a con­
sequence, the Z8000 uses no extra clock cycles to decode
such a mode and to decide whether it has a short or long ad-

[7] The major subsystems of the Z8000are shown overlaid on
a photograph of the chip. The overlap map shows a relatively
large portion of chip area devoted to bus and CPU mode con­
trol. The photograph shows a clean layout, with little space
wasted in "meandering" interconnections. The NAN 0 gates
used in the instruction execution unit are not visible at this
magnification. Color·key is identical to that in Figs. 1 and 3.

Legend:
Orange-First group

Dark blue-Primary instruction decoder; 2nd group
Light blue-Secondary instruction decoder; 2nd group

Red-Instruction execution unit; 2nd group
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dress offset. In most such instructions, moreover, the data­
manipulation time is fully overlapped with the fetch time of
the first word of the next instruction. An example of the
overlap for an ADD instruction is given in Fig. S.

The decoder outputs go to the NAND gates in the
instruction-execution unit. Since over 700 three-input NAND

gates are used in the execution unit and CPU system-timing
generator control unit, it is worth discussing the NAND gates
in more detail.

The three-input NAND gate is shown in Fig. 6A. Its timing
diagram is in 6B and the layout in 6C. One NAND input selects
one of eight clock cycles per machine cycle, the second input
one of eight machine states per instruction, and the third in­
put an output of the instruction decoder. Each state and
machine timing signal is generated at the falling edge of the
clock.

The gate output (point A of 6A) is transferred to point B
while the clock is high, and it is stored there by the gate
capacity until the next clock cycle occurs. Then, when the
clock goes low, the microcommand is generated. Because the
clock pulse resynchronizes the output, the NAND gates can in­
troduce a big time delay up to one clock cycle.

This comparatively large time skew allows a moderate
amount of NAND gate node capacitance so the gates can be
laid out perpendicular to the state and machine-timing metal
lines.

The Z80 and 8080 also used NAND gates but in a less com­
plex way, since these processors, having less complex in­
structions, had fewer state and machine cycles.

The instruction implementation execution unit of the
Z8000 also generates some macrocommands.

Typical microcommands are used for arithmetic-unit
register control, shift control, and register-file control for
selecting byte or words. These macrocommands are encoded
on a control bus that is connected to the execution unit. They
are then decoded in the arithmetic and register-file sections
of the chip.

Going down the design ladder
Two of the most difficult steps in designing the control

logic of the 28000 were converting instruction-state
diagrams to the logic equations and then converting the
equations to an MOS schematic. The greatest problem was to
avoid leaving something out or making an incorrect inter­
connection-mistakes that would be costly to correct.

Elaborate precautions were taken when the MOS schematic
for the control group was complete. To check for mistakes,
for example, the design team went through the tedious exer­
cise of converting the schematic back to logic equations and
the logic equations back to state diagrams.

The instruction-state diagrams list what rnicrocommands
have to be given for each instruction during every clock cycle
and for each fetch and execute machine state. Figure 4 shows
some instruction states and their conversion to microcom­
mands.

Estimating speed
The key point in converting the logic equations to the MUS

schematic is to keep the schematic as close as possible
topologically to the final layout (Fig. 7). If this is done, the
designer can then estimate the internal delay times by
calculating the loaded capacity for each logic node. For the
Z8000, the designers prepared tables listing the critical
capacities for each important node. Estimates were made of
the probable layout, line lengths, and spacings and overall

For further reading
For further details of the Z8000 and other 16-bit micro­
processors, the following reading may be beneficial:

"Two versions of 16-bit chip span microprocessor,
minicomputer needs," Masatoshi Shima, Electronics,
Dec. 21, 1978, p. 81.

"Architecture of a new processor," Bernard Peuto,
IEEE Computer, February 1979, p. 10.

"New options from big chips," James McKevitt and
John Bayliss, IEEE Spectrum, March 1979, p. 28.

"Computers: our 'rnlcro-un iverse" expands,"
Robert Sugarman, IEEE Spectrum, January 1979, p.
32.

topology-for example, what and how many metal lines
would be placed between two power busses. Then, using
computer-generated circuit simulation for a matrix of
preassigned capacities, the designers extrapolated the results
with a pocket calculator and could predict the delay times
with about 90 percent of the accuracy of a total computer
simulation. This simple procedure worked because even the
largest network used for computer delay simulation can be
divided into several basic elements, such as invertors, flip­
flops, and drivers.

But good communication remains essential between the
layout draftsmen and the designers. The designer must know
the particular layout procedures used by each draftsman and
must be sure that critical propagation delay paths are laid out
as anticipated. As a further check, when the layout is com­
pleted, it must be rechecked for proper interconnections and
node capacitance where critical.

After computer digitizing of the layout to make a mask,
and after a few production dies have been obtained, the
logical operations are rechecked. This also permits a
characterization of performance vs. clock speed and
temperature.

For die checkout, the author used a microprocessor­
controlled checkout system that included 1 k of RAM

memory for fast dumping of the microprocessor's contents.
With this system, the state of all registers, flags, and the ad­
dress/data control bus at each machine cycle can be
modified and stored on a floppy disk, displayed on a CRT or
printer and later converted into a test pattern for functional
testing. This technique saved at least three to four months of
debugging time. •
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